Nuprl Lemma : assert-ma-interface-loc 11,40

A:Type, I:MaInterface(A), i:Id.
(ma-interface-loc(I;i))
 ((i  ma-interface-locs(I)) & (k:Knd. (k  ma-interface-dom(I;i)))) 
latex


DefinitionsType, False, MaInterface(T), (x  l), x:A  B(x), x:AB(x), s = t, {T}, x:AB(x), P  Q, x:AB(x), SQType(T), , strong-subtype(A;B), s ~ t, left + right, , #$n, , ff, Void, True, Unit, ma-interface-loc(I;i), {x:AB(x)} , Knd, State(ds), hasloc(k;i), x.A(x), xt(x), Atom$n, a < b, ma-interface-locs(I), ma-interface-dom(I;i), case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , type List, S  T, Outcome, A  B, ||as||, A, , l[i], |g|, A c B, P & Q, P  Q, [car / cdr], P  Q, P  Q, hd(l), last(L), , IdDeq, x  dom(f), b, Top, Id, a:A fp B(a), t  T, null(as), b, tt, x:A.B(x), <ab>, i <z j, i j, n+m, i  j < k, i  j , {i..j}, , IdLnk, p =b q, (i = j), x =a y, a < b, f(a), x f y, a < b, [d], eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), p  q, p  q, p q, [], tl(l), n - m, if a<b then c else d, nth_tl(n;as), rec-case(a) of [] => s | x::y => z.t(x;y;z), Y, Dec(P), b | a, a ~ b, a  b, a <p b, a < b, xLP(x), (xL.P(x)), r  s, r < s, q-rel(r;x), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , (e < e'), e c e', e<e'.P(e), ee'.P(e), e<e'P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), es-r-immediate-pred(es;R;e';e), same-thread(es;p;e;e'), [ei p j], [ei p j], f2f+-pred(e',e), fpf-domain(f), EqDecider(T)
Lemmasnil member, decidable false, eqtt to assert, iff transitivity, eqff to assert, assert of bnot, not wf, false wf, select member, IdLnk wf, int seg wf, non neg length, le wf, bnot wf, null wf3, member-fpf-domain, ma-interface wf, iff wf, l member subtype, ma-interface-loc wf, rev implies wf, nat wf, length wf1, ma-interface-locs wf, select wf, ma-interface-dom wf, l member wf, member wf, subtype rel wf, fpf-trivial-subtype-top, fpf wf, hasloc wf, decl-state wf, top wf, assert wf, Knd wf, Id wf, fpf-dom wf, id-deq wf, bool wf, guard wf, bool sq

origin